
4th Qtr 2008 n Page 25

Parameter Dependency
and the STATISTICS_LEVEL
Parameter

By Yong Huang

 O racle initialization parameters greatly influence the
behavior and performance of the Oracle Database. It
is important for DBAs and Developers to understand

the effects of setting various values in these parameters as
well as the interdependencies amongst these parameters.
In this article, we will see how certain parameters define
the values for other parameters, and drill deeper using the
STATISTICS_LEVEL initialization parameter.

Parameter Dependency
Many initialization parameters determine the values of other parameters.
For instance, setting OPTIMIZER_FEATURES_ENABLE to a certain version
will adjust many other Cost-Based-Optimizer (CBO) parameters, changing
the NLS_LANGUAGE parameter also changes the NLS_SORT parameter,
and increasing the value of the PROCESSES parameter also correspondingly
increases the derived value of the SESSIONS parameter, which in turn increases
the derived value of the TRANSACTIONS parameter. Wouldn’t it be nice if
Oracle could give us a view named $PARAMETER_DEPENDENCY so we
can have this output? With this in mind assume that we have the following
hypothetical view named V$PARAMETER_DEPENDENCY where Oracle exposes
these dependencies:

SQL> desc V$PARAMETER_DEPENDENCY
 Name Null? Type
 ---------------- ------- --------
 NUM NUMBER
 NAME VARCHAR2(80)
...
 PNUM NUMBER

SQL> select lpad(‘ ‘,2*(level-1)) || name name
 2 from V$PARAMETER_DEPENDENCY
 3 connect by prior num = pnum;

NAME

...
nls_language
 nls_sort
...
processes
 sessions
 transactions
...

The pearl of this new view is not on the surface, but on its underlying X$
table, perhaps hypothetically called X$KSPPDP (name modeled after X$KSPPI
and related view), where you’ll find this:

(Warning: Query from the hypothetical fixed table!)

SQL> select lpad(‘ ‘,2*(level-1)) || ksppdpnm name
 2 from X$KSPPDP
 3 connect by prior indx = pindx;

NAME

...
optimizer_features_enable
 _optim_peek_user_binds
 _optimizer_or_expansion
 _optimizer_undo_cost_change
...
statistics_level
 _ash_enable
 _rowsource_execution_statistics
 _ultrafast_latch_statistics
...

Besides satisfying our curiosity, this information can help us in our work.
For instance, the Reference manual page for OPTIMIZER_FEATURES_ENABLE
is supplemented with individual control knobs a DBA or developer can
experiment with in SQL tuning. But the actual parameter names for these
controls are not documented. The query on the hypothetical X$ table would
have been able to help us identify the parameter we need.

Knowledge of parameter dependency can be used in two ways. For example,
in the case of the STATISTICS_LEVEL parameter, you can either leave the
parent parameter, (STATISTICS_LEVEL) at a higher level (TYPICAL), and
disable certain parameters that would otherwise be enabled, or set the parent
to a lower level (BASIC), and enable a few child parameters that would have
otherwise been disabled. Needless to say, you should always consult with
Oracle support before you change or set any underscore parameter.

Alas, the current version of Oracle does not have such a parameter dependency
view. However, we can build this dependency list ourselves. More and more
parameters are modified to be dynamically changeable without shutting down
the instance. The dependency information for those parameters can be
generated with code similar to the following (only code using undocumented
tables and columns is shown):

--Prepare a parameter table to work with, based on X$KSPPI, table of
--all init params, and X$KSPPSV, table of their system level values
create table PARAM as
select a.ksppinm, a.ksppity, b.ksppstvl
	 from X$KSPPI a, X$KSPPSV b
where a.indx=b.indx order by a.indx;

--Prepare a temporary table to store result of each run
create table TMP as select * from PARAM where 1=2;

continued on page 26

Page 26 n 4th Qtr 2008

for x in (select * from PARAM) loop
 if (x.ksppity = 1) then -- boolean
 begin
 if (x.ksppstvl = ‘TRUE’) then
 execute immediate ‘alter system set ‘ || x.ksppinm || ‘ to false
scope=memory’;
 insert into TMP select select a.ksppinm, a.ksppity, b.ksppstvl
 from X$KSPPI a, X$KSPPSV b where a.indx=b.indx order by a.indx;
 execute immediate ‘alter system set ‘ || x.ksppinm || ‘ to true
scope=memory’; -- change it back
 else
 execute immediate ‘alter system set ‘ || x.ksppinm || ‘ to true
scope=memory’;
 insert into TMP select select a.ksppinm, a.ksppity, b.ksppstvl
 from X$KSPPI a, X$KSPPSV b where a.indx=b.indx order by a.indx;
 execute immediate ‘alter system set ‘ || x.ksppinm || ‘ to false
scope=memory’; -- change it back
 end if;
 --compare PARAM with TMP and store the diff somewhere
 truncate table TMP;
 exception when ORA-2095 then -- “specified initialization parameter cannot be
modified”
 --record the param in a table so we bounce DB later to change it
 elsif (x.ksppity = 2) then -- string
 --append a letter to the value, insert into TMP, remove the letter
...
end if

Some parameters will need a database bounce. Discovery of their dependency
is better done manually for each of those parameters, although a sophisticated
shell script may be able to automate the process.

STATISTICS_LEVEL
There are a few parameters whose dependency is well-known. But the details
of the one about database statistics, STATISTICS_LEVEL, are not well recorded
in the documentation and elsewhere. STATISTICS_LEVEL is a parameter that
affects various types of statistics gathering and DBA advisories. Most shops
rarely change its value from its default, TYPICAL value, to either BASIC or ALL.
When they do, it is usually done using the ALTER SYSTEM command rather
than ALTER SESSION to set it to ALL, since the intent is usually only temporary:
i.e. gathering more extensive statistics for a short period of time and then
turn it back to TYPICAL. Some companies have extreme demand on the raw
horsepower of the database engine and so set it to BASIC. Regardless which
value you turn it to, it is helpful to understand its implications. Like the
OPTIMIZER_FEATURES_ENABLE parameter, the Reference manual has the
details of the changes this parameter brings to the database. In addition, Oracle
provides a view listing the details. The output below is formatted to be displayed
in a pivoted form, from a Oracle Database 10.2.0.4 with STATISTICS_LEVEL
set to TYPICAL, DB_CACHE_ADVICE set to OFF, with no changes made to
any underscore parameter. You can see whether each performance feature
(STATISTICS_NAME) is enabled, at what STATISTICS_LEVEL it will be enabled
for you (ACTIVATION_LEVEL), and what dynamic performance view is
relevant, among other things.

(select STATISTICS_NAME, SYSTEM_STATUS, ACTIVATION_LEVEL,
STATISTICS_VIEW_NAME, SESSION_SETTABLE, DESCRIPTION
from V$STATISTICS_LEVEL
order by 1)

STATISTICS_NAME : Active Session History
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$ACTIVE_SESSION_HISTORY

SESSION_SETTABLE : NO
DESCRIPTION : Monitors active session activity using MMNL

STATISTICS_NAME : Bind Data Capture
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$SQL_BIND_CAPTURE
SESSION_SETTABLE : NO
DESCRIPTION : Enables capture of bind values used by SQL statements

STATISTICS_NAME : Buffer Cache Advice
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$DB_CACHE_ADVICE
SESSION_SETTABLE : NO
DESCRIPTION : �Predicts the impact of different cache sizes on number

of physical reads

STATISTICS_NAME : Global Cache Statistics
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : NO
DESCRIPTION : RAC Buffer Cache statistics

STATISTICS_NAME : Longops Statistics
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$SESSION_LONGOPS
SESSION_SETTABLE : NO
DESCRIPTION : Enables Longops Statistics

STATISTICS_NAME : MTTR Advice
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$MTTR_TARGET_ADVICE
SESSION_SETTABLE : NO
DESCRIPTION
: Predicts the impact of different MTTR settings on number of physical I/Os

STATISTICS_NAME : Modification Monitoring
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : NO
DESCRIPTION : Enables modification monitoring

STATISTICS_NAME : PGA Advice
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$PGA_TARGET_ADVICE
SESSION_SETTABLE : NO
DESCRIPTION : �Predicts the impact of different values of

pga_aggregate_target on the performance of memory
intensive SQL operators

STATISTICS_NAME : Plan Execution Statistics
SYSTEM_STATUS : DISABLED
ACTIVATION_LEVEL : ALL
STATISTICS_VIEW_NAME : V$SQL_PLAN_STATISTICS
SESSION_SETTABLE : YES
DESCRIPTION : Enables collection of plan execution statistics

STATISTICS_NAME : Segment Level Statistics
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$SEGSTAT
SESSION_SETTABLE : NO
DESCRIPTION : Enables gathering of segment access statistics

STATISTICS_NAME : Shared Pool Advice
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$SHARED_POOL_ADVICE
SESSION_SETTABLE : NO

Parameter Dependency and the STATISTICS_LEVEL Parameter continued from page 25

4th Qtr 2008 n Page 27

DESCRIPTION : �Predicts the impact of different values of
shared_pool_size on elapsed parse time saved

STATISTICS_NAME : Streams Pool Advice
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$STREAMS_POOL_ADVICE
SESSION_SETTABLE : NO
DESCRIPTION : �Predicts impact on Streams performance of different

Streams pool sizes

STATISTICS_NAME : Threshold-based Alerts
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : NO
DESCRIPTION : Controls if Threshold-based Alerts should be enabled

STATISTICS_NAME : Timed OS Statistics
SYSTEM_STATUS : DISABLED
ACTIVATION_LEVEL : ALL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : YES
DESCRIPTION : Enables gathering of timed operating system statistics

STATISTICS_NAME : Timed Statistics
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : YES
DESCRIPTION : Enables gathering of timed statistics

STATISTICS_NAME : Ultrafast Latch Statistics
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : null
SESSION_SETTABLE : NO
DESCRIPTION : �Maintains statistics for ultrafast latches in the

fast path

STATISTICS_NAME : Undo Advisor, Alerts and Fast Ramp up
SYSTEM_STATUS : ENABLED
ACTIVATION_LEVEL : TYPICAL
STATISTICS_VIEW_NAME : V$UNDOSTAT
SESSION_SETTABLE : NO
DESCRIPTION : Transaction layer manageability features

The default value TYPICAL is perfect for most cases. But if you want a
little more to be done, say to just collect timed OS statistics, and do not
want to have the overhead of other collections turned on by setting the
STATISTICS_LEVEL parameter to ALL, you must find exactly what parameter
to set. In this case, it is easy: Just set TIMED_OS_STATISTICS to TRUE.
Going the other way, say you want to turn off PGA Advice because you do
not want to monitor V$PGA_TARGET_ADVICE, you can set an underscore
parameter _SMM_ADVICE_ENABLED to FALSE. Since the TYPICAL setting
means most statistics are enabled (see SYSTEM_STATUS column above), it’s
likely you will individually turn some off more often than turn some on.

Back to the BASIC setting: Even though documentation sometimes gives
advice such as “To disable monitoring of a table, set the STATISTICS_LEVEL
initialization parameter to BASIC,” the BASIC setting should not be taken
lightly. If most team members understand the implications quite well and you
have a good support contract with Oracle, you can do so, but remember that
several parameters are essential and should be enabled. For example, to
provide even basic performance tuning, TIMED_STATISTICS must be turned
on (unless you run the buggy Oracle 8.1.5). Losing statistics on some critical
latches can significantly limit your observation of the database health, so you
may need to set the hidden parameter _ULTRAFAST_LATCH_STATISTICS to

TRUE. Do you use ASH (Active Session History), the wonderful performance
monitoring facility? Unless you do not have the license or have one similarly
built in-house, perhaps with direct SGA attach to minimize overhead, you will
need to set _ASH_ENABLE to TRUE. V$SESSION_LONGOPS is probably
essential, particularly in a data warehouse, so you will specifically have to set
_LONGOPS_ENABLED to TRUE. Do you take chances and check V$SQL_
BIND_CAPTURE for captured bind variables, in case you are lucky? Set _
CURSOR_BIND_CAPTURE_AREA_SIZE to some value. If you use V$SEGSTAT
regularly, _OBJECT_STATISTICS needs to be TRUE. Everything else may not
be essential.

Given the above, the following is a summary of the Oracle features or
capabilities controlled by the STATISTICS_LEVEL parameter, followed by the
precisely targeted child parameter. The parameters are listed in alphabetic
order for easy reference. The findings are from research on Metalink, various
sources on the Internet, and my own lab tests.

Active Session History: _ASH_ENABLE
Active Session History (ASH) is a great feature. See the Performance Tuning
manual for details. Enable it unless you have a license issue or have your
home-grown script.

Bind Data Capture: _CURSOR_BIND_CAPTURE_AREA_SIZE (set to a
non-zero value)
V$SQL_BIND_CAPTURE only captures bind variable values during a hard
parse, a soft parse that creates a new child cursor, or if the last capture
was _CURSOR_BIND_CAPTURE_INTERVAL seconds or longer ago, column
type is not LONG or LOB, and bind variables in the select list are ignored.
If this is not the case and no values are captured at all, it is possible that
_CURSOR_BIND_CAPTURE_AREA_SIZE needs to be increased. These are
the limitations I know about Oracle’s automatic cursor bind value capture.
If you decide to not use this feature, set this parameter to 0, and use 10046
trace at level 4 or 12 only when you need it.

Buffer Cache Advice: DB_CACHE_SIZE
Oracle can predict how much buffer cache hit ratio will improve for a
certain amount of increase in buffer cache size. But it comes with a price,
not withstanding the usefulness of this hit ratio. The feature uses some CPU
cycles as well as memory (100 bytes per buffer according to Metalink Note
148511.1). Generally, you give all remaining memory of the server to buffer
cache after you consider other SGA components and predict how much total
PGA could be. Isn’t that what you’re supposed to do regardless of buffer
cache advice?

Global Cache Statistics: _GC_STATISTICS
On RAC, you almost certainly need this to be TRUE, or the statistics in GV$G%
views will be frozen.

Longops Statistics: _LONGOPS_ENABLED
For a data warehouse database, you probably need to check V$SESSION_
LONGOPS periodically. For OLTP, if you prefer, you can enable this parameter
only for a while perhaps during data loading and disable it when done.
But the inconvenience is probably not worth disabling it.

MTTR Advice: _DB_MTTR_ADVICE
Sets or disables the Mean-Time-To-Recover (MTTR) Advisor.

continued on page 28

Page 28 n 4th Qtr 2008

Modification Monitoring: _DML_MONITORING_ENABLED
This Oracle Database 10g parameter allows you to do what you used to be able
to do in 9i with the ALTER TABLE (NO)MONITORING command. However, this
is not at the table level anymore: It is system-wide with monitoring enabled
for all or none. I have observed that disabling table monitoring may not gain
you much performance. To verify this, check buffer gets and executions of the
recursive SQLs that update or insert into MON_MODS$ in V$SQLSTATS.

PGA Advice: _SMM_ADVICE_ENABLED
Self-explanatory.

Plan Execution Statistics: _ROWSOURCE_EXECUTION_STATISTICS
In Oracle9i Database, SQL trace will not give you buffer gets information for
each step in the execution plan in the dump file or in V$SQL_PLAN_STATISTICS,
unless you turn this option on (and hard parse the cursor). Most people use
the ALTER SESSION command to enable it at session level during SQL tuning.
There is little value in setting it permanently system-wide. If you want the
effect on individual SQLs instead of the whole session you are in, use the
gather_plan_statistics hint instead. In 10g, you can get these row level
statistics by setting this parameter with ALTER SESSION without enabling
SQL trace.

Segment Level Statistics: _OBJECT_STATISTICS
Object statistics are important to identify hot objects. But there is possible
memory leak in querying V$SEGSTAT or V$SEGMENT_STATISTICS. See Bug
3519807 for versions in which the bug is fixed.

Shared Pool Advice: _LIBRARY_CACHE_ADVICE
If you check V$SHARED_POOL_ADVICE regularly, you may leave this on. Note
that whatever %simulator% latch activity is mostly due to these nearly unused
advisors. On top of that, Bug 6879763 affects versions 10.2.0.3 and 11.1.0.6.
Consider setting it to FALSE if shared pool simulator latch is one of the top
(say) 10 in latch gets. By the way, in spite of the name of the parameter, the
view related to this parameter is not named V$LIBRARY_CACHE_ADVICE.

Streams Pool Advice: _DISABLE_STREAMS_POOL_AUTO_TUNING
Self-explanatory.

Threshold-based Alerts: _THRESHOLD_ALERTS_ENABLE
If you do not use EM (Enterprise Manager) and do not check views like
DBA_OUTSTANDING_ALERTS and DBA_THRESHOLDS, you must have your
home-grown monitoring scripts. Then you can consider disabling this
parameter by setting it to 0.

Timed OS Statistics: TIMED_OS_STATISTICS
Oracle clearly warns us about the overhead. In spite of the name, V$OSSTAT is
not related to this parameter and will always contain data. On pre-Solaris 10,
this parameter turns on microstate accounting.

Timed Statistics: TIMED_STATISTICS
Must be true. Too well-known to discuss further.

Ultrafast Latch Statistics: _ULTRAFAST_LATCH_STATISTICS
If this parameter is false, you lose latch statistics in V$LATCH% views for a few
important latches, including cache buffers chains latches, most likely not

what you want. By the way, based on the name, it seems some latches are
called ultrafast latches, and most are therefore non-fast latches by following
this logic.

Undo Advisor, Alerts and Fast Ramp up: _DISABLE_TXN_ALERT
Fast ramp-up is explained in Metalink Note 396863.1. But I could not find
more information about this parameter. If you set STATISTICS_LEVEL to
BASIC, _DISABLE_TXN_ALERT is 659. When TYPICAL, it’s 0. Even when the
value is 659, V$UNDOSTAT.TUNED_UNDORETENTION still has numbers.
Dennis Yurichev has found the parameter is related to the ktsmgd_ variable
and sets certain bits that may affect Oracle’s alert.log recording and possibly
transaction-related functions (Ref: http://blogs.conus.info/node/3).

The above paragraph is a rundown of the child parameters affected by
the parent, namely STATISTICS_LEVEL. Most of the observations can be
checked by a simple lab test. For instance, to check the effect of
_ULTRAFAST_LATCH_STATISTICS, save a snapshot of V$LATCH, use the
ALTER SYSTEM command to set the parameter to FALSE, run some SQLs or
your user application, save another snapshot of V$LATCH and find the
difference. You will see the freezing of some latches’ statistics that are
supposed to constantly incremented. Apart from self-explanatory ones, all
parameters are explained beyond basics, but practical implications are not
all found. For instance, although you can verify that _DISABLE_TXN_ALERT
is ktsmgd_ in Oracle kernel by running oradebug dumpvar sga ktsmgd_
before and after you change the parameter, how the bitmap bits in this
parameter affect our DBA work still needs more research.

New in Oracle Database 11g
Before we move on, we do need to understand what is coming in the future in
this area. Oracle Database 11.1.0.6 has 24 rows in V$STATISTICS_LEVEL
compared to 17 in 10.2.0.4. The additions are listed below, along with our
best guess about their changed values when going from BASIC to TYPICAL
values in the STATISTICS_LEVEL parameter.

Adaptive Thresholds Enabled: _BSLN_ADAPTIVE_THRESHOLDS_
ENABLED, FALSE -> TRUE

Automated Maintenance Tasks: _ENABLE_AUTOMATIC_MAINTENANCE,
0 -> 1

Plan Execution Sampling: _ROWSOURCE_PROFILING_STATISTICS, FALSE
-> TRUE

SQL Monitoring: _SQLMON_THRESHOLD, 0 -> 5

Session Wait Stack: _DISABLE_WAIT_STACK, TRUE -> FALSE

Time Model Events: _TIMEMODEL_COLLECTION, FALSE -> TRUE

V$IOSTAT_* statistics: _IO_STATISTICS, FALSE -> TRUE

Summary
Oracle initialization parameters can be organized in a hierarchy such that
changing values of some parameters changes the values of others. Knowledge
of the parameter dependency helps DBAs and performance tuning analysts
better judge the impact as well as provide them with additional tools.
The STATISTICS_LEVEL parameter has not been extensively studied, compared
to some other parent parameters such as OPTIMIZER_FEATURES_ENABLE,
and yet it has a wide effect when its value is changed. The three values for
STATISTICS_LEVEL are severely insufficient when you decide to enable or
disable certain features in the database based on your business need. It is

•

•

•

•

•

•

•

Parameter Dependency and the STATISTICS_LEVEL Parameter continued from page 27

4th Qtr 2008 n Page 29

important to be familiar with the individual control parameters and use
them wisely, with Oracle’s approval. We hope that this article provided some
background that you can use while dealing with this topic.

Appendix:
SQL(s) to find the parameter difference for the three values of
STATISTICS_LEVEL:

column parameter format a37
column “Instance Value” format a10
set trimspool on pagesize 10000
spool typical
select a.ksppinm “Parameter”, c.ksppstvl “Instance Value”
from X$KSPPI a, X$KSPPSV c where a.indx = c.indx order by 1;
spool off
alter system set STATISTICS_LEVEL=basic;
spool basic
select a.ksppinm “Parameter”, c.ksppstvl “Instance Value”
from X$KSPPI a, X$KSPPSV c where a.indx = c.indx order by 1;
spool off

alter system set STATISTICS_LEVEL=all;
spool all
select a.ksppinm “Parameter”, c.ksppstvl “Instance Value”
from X$KSPPI a, X$KSPPSV c where a.indx = c.indx order by 1;
spool off
host diff typical.lst basic.lst | more
host diff typical.lst all.lst | more

n n n About the Author
Yong Huang is a DBA at M. D. Anderson Cancer Center. Before joining
M. D. Anderson, Huang worked as an Oracle DBA or consultant at
Schlumberger, Unocal Oil, Nationwide Insurance, Electronic Arts, and
eBay. Other than Oracle, his interest includes UNIX and Windows
internals. Find more information at: http://yong321.freeshell.org/
computer.html.

